Myocardial Fibrosis Induced by Exposure to Subclinical Lipopolysaccharide Is Associated with Decreased miR-29c and Enhanced NOX2 Expression in Mice
نویسندگان
چکیده
BACKGROUND Exposure to subclinical levels of lipopolysaccharide (LPS) occurs commonly and is seemingly well tolerated. However, recurrent LPS exposure induces cardiac fibrosis over 2 to 3 months in a murine model, not mediated by the renin-angiotensin system. Subclinical LPS induces cardiac fibrosis by unique mechanisms. METHODS In C57/Bl6 mice, LPS (10 mg/kg) or saline (control) were injected intraperitoneally once a week for 1-4 weeks. Mice showed no signs of distress, change in activity, appetite, or weight loss. Mice were euthanized after 3 days, 1, 2, or 4 weeks to measure cardiac expression of fibrosis-related genes and potential mediators (measured by QRT-PCR), including micro-RNA (miR) and NADPH oxidase (NOX). Collagen fraction area of the left ventricle was measured with picrosirius red staining. Cardiac fibroblasts isolated from adult mouse hearts were incubated with 0, 0.1, 1.0 or 10 ng/ml LPS for 48 hours. RESULTS Cardiac miR expression profiling demonstrated decreased miR-29c after 3 and 7 days following LPS, which were confirmed by QRT-PCR. The earliest changes in fibrosis-related genes and mediators that occurred 3 days after LPS were increased cardiac expression of TIMP-1 and NOX-2 (but not of NOX-4). This persisted at 1 and 2 weeks, with additional increases in collagen Iα1, collagen IIIα1, MMP2, MMP9, TIMP1, TIMP2, and periostin. There was no change in TGF-β or connective tissue growth factor. Collagen fraction area of the left ventricle increased after 2 and 4 weeks of LPS. LPS decreased miR-29c and increased NOX-2 in isolated cardiac fibroblasts. CONCLUSIONS Recurrent exposure to subclinical LPS induces cardiac fibrosis after 2-4 weeks. Early changes 3 days after LPS were decreased miR-29c and increased NOX2 and TIMP1, which persisted at 1 and 2 weeks, along with widespread activation of fibrosis-related genes. Decreased miR-29c and increased NOX2, which induce cardiac fibrosis in other conditions, may uniquely mediate LPS-induced cardiac fibrosis.
منابع مشابه
The effect of aerobic exercise on MMP-2 / miR-21 signaling pathway of cardiac fibrosis in elderly rats
Background :The concept of survival has changed since the twentieth century to guarantee quality of life in the twenty-first century (1). Aging is associated with a certain degree of interstitial fibrosis, which progresses to heart failure. Therefore, finding new and practical methods is an important and necessary help to reduce heart tissue fibrosis in the elderly (2). Providing mechanisms by ...
متن کاملEnhanced expression of transient receptor potential channel 3 in uterine smooth muscle tissues of lipopolysaccharide-induced preterm delivery mice
Objective(s): We aimed to investigate the influence of transient receptor potential channel 3 (TRPC3) on lipopolysaccharide-induced (LPS) preterm delivery mice. Materials and Methods: Mice were randomly assigned to the four groups: an unpregnant group, a mid-pregnancy group (E15), a term delivery group, and an LPS-induced preterm delivery group (intraperitoneal injection LPS at 15 days). Uterin...
متن کاملEffect of losartan on NOX2 transcription following acute myocardial ischemia-reperfusion
Introduction: Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (Nox2) is one of the predominant sources of ROS production during myocardial ischemia-reperfusion and can be induced by angiotensin II. The evidence suggests that pharmacological blockers of renin-angiotensin system can exert direct tissue effects independent of their ability to regulate blood pressure. The mechanism...
متن کاملPU.1-deficient mice are resistant to thioacetamide-induced hepatic fibrosis: PU.1 finely regulates Sirt1 expression via transcriptional promotion of miR-34a and miR-29c in hepatic stellate cells
PU box binding protein (PU.1) is a critical transcription factor involved in many pathological processes. However, its exact role in activation of hepatic stellate cells (HSCs) and liver fibrosis was rarely reported. Here, we found that, in HSCs of PU.1+/- mice, Sirt1 mRNA expression was not changed but Sirt1 protein was significantly increased, suggesting its promoting role in Sirt1 translatio...
متن کاملMicroRNA-29 overexpression by adeno-associated virus suppresses fibrosis and restores muscle function in combination with micro-dystrophin.
Duchenne muscular dystrophy (DMD) is caused by dystrophin deficiency resulting in progressive muscle weakness and fibrotic scarring. Muscle fibrosis impairs blood flow, hampering muscle repair and regeneration. Irrespective of the success of gene restoration, functional improvement is limited without reducing fibrosis. The levels of miR-29c, a known regulator of collagen, are reduced in DMD. Ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014